Пятница, 11.07.2025, 17:35 | Приветствую Вас Гость

Мой сайт

Главная » 2012 » Ноябрь » 9 » Сферическая геометрия
20:21
 

Сферическая геометрия

Содержание статьи

СФЕРИЧЕСКАЯ ГЕОМЕТРИЯ

 Рис. 8

Теоремы о пересечении высот и медиан также остаются верными, но их обычные доказательства в планиметрии прямо или косвенно используют параллельность, которой, на сфере нет, и потому проще доказать их заново, на языке стереометрии. Рис. 9 иллюстрирует доказательство сферической теоремы о медианах: плоскости, содержащие медианы сферического треугольника АВС, пересекают плоский треугольник с теми же вершинами по его обычным медианам, следовательно, все они содержат радиус сферы, проходящий через точку пересечения плоских медиан. Конец радиуса и будет общей точкой трех «сферических» медиан.

 Рис. 9

Свойства сферических треугольников во многом отличаются от свойств треугольников на плоскости. Так, к известным трем случаям равенства прямолинейных треугольников добавляется еще и четвертый: два треугольника АВС и А`В`С` равны, если равны соответственно три угла Р>font>А = Р>font>А`, Р>font>В = Р>font>В`, Р>font>С = Р>font>С`. Таким образом, на сфере не существует подобных треугольников, более того, в сферической геометрии нет самого понятия подобия, т.к. не существует преобразований, изменяющих все расстояния в одинаковое (не равное 1) число раз. Эти особенности связаны с нарушением евклидовой аксиомы о параллельных прямых и также присущи геометрии Лобачевского. Треугольники, имеющие равные элементы и различную ориентацию, называются симметричными, таковы, например, треугольники АС`С и ВСС` (рис. 10).

 Рис. 10

Сумма углов всякого сферического треугольника всегда больше 180°. Разность Р>font>А+Р>font>В +Р>font>С p>font> = d (измеряемая в радианах) величина положительная и называется сферическим избытком данного сферического треугольника. Площадь сферического треугольника: S = R>2 d где R радиус сферы, а d сферический избыток. Эта формула впервые была опубликована голландцем А.Жираром в 1629 и названа его именем.

Если рассматривать двуугольник с углом a, то при 226 = 2p/n (n целое число) сферу можно разрезать ровно на п копий такого двуугольника, а площадь сферы равна 4пR2 = 4p при R = 1, поэтому площадь двуугольника равна 4p/n = 2a. Эта формула верна и при a>font> = 2p>font>т/п и, следовательно, верна для всех a. Если продолжить стороны сферического треугольника АВС и выразить площадь сферы через площади образующихся при этом двуугольников с углами А, В, С и его собственную площадь, то можно прийти к вышеприведенной формуле Жирара.

Координаты на сфере.

Каждая точка на сфере вполне определяется заданием двух чисел; эти числа (координаты) определяются следующим образом (рис. 11). Фиксируется некоторый большой круг QQ` (экватор), одна из двух точек пересечения диаметра сферы PP`, перпендикулярного к плоскости экватора, с поверхностью сферы, например Р (полюс), и один из больших полукругов PAP`, выходящих из полюса (первый меридиан). Большие полукруги, выходящие из P, называются меридианами, малые круги, параллельные экватору, такие, как LL`, параллелями. В качестве одной из координат точки M на сфере принимается угол q>font> = POM (высота точки), в качестве второй угол j>font> = AON между первым меридианом и меридианом, проходящим через точку M (долгота точки, отсчитываемая против часовой стрелки). Рис. 11

В географии (на глобусе) в качестве первого меридиана принято использовать Гринвичский меридиан, проходящий через главный зал Гринвичской обсерватории (Гринвич городской округ Лондона), он разделяет Землю на Восточное и Западное полушария, соответственно и долгота бывает восточной либо западной и измеряется от 0 до 180° в обе стороны от Гринвича. А вместо высоты точки в географии принято использовать широту, т.е. угол NOM = 90° q, отсчитываемый от экватора. Т.к. экватор делит Землю на Северное и Южное полушария, то и широта бывает северной либо южной и изменяется от 0 до 90°.

Марина Федосова

Просмотров: 5823 | Добавил: lmoned | Рейтинг: 0.0/0
Всего комментариев: 0
Меню сайта
Мини-чат
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа
Поиск
Календарь
«  Ноябрь 2012  »
Пн Вт Ср Чт Пт Сб Вс
   1234
567891011
12131415161718
19202122232425
2627282930
Архив записей
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz