6) Пусть в общем уравнении плоскости (2) три коэффициента равны нулю, т.е. уравнение плоскости имеет вид а) Ax = 0 или б) By = 0 или в) Cz = 0. Эти уравнения можно записать соответственно в виде: а) x = 0 – уравнение координатной плоскости Oyz; б) y = 0 – уравнение координатной плоскости Oxz, в) z = 0 – уравнение координатной плоскости Oxy.
Аналитическая геометрия в пространстве. Q. Теорема. Всякое уравнение первой степени с тремя переменными x,y,z вида (1) задает плоскость в пространстве и наоборот, всякая плоскость в пространстве может быть задана уравнением с тремя переменными x,y,z вида (1).
Параметрическое уравнение плоскости. Дана точка и два неколлинеарных вектора Составить уравнение плоскости, проходящей через точку параллельно векторам . Векторы компланарны, ? линейно зависимы ? один из них является линейной комбинацией остальных, т.